Statistics of partial permutations via Catalan matrices

نویسندگان

چکیده

A generalized Catalan matrix ( a n , k ) ≥ 0 is generated by two seed sequences s = 1 … and t 2 together with recurrence relation. By taking ℓ + we can interpret as the number of partial permutations, which are × -matrices zero rows at most one in each row or column. In this paper prove that fundamental statistics some set-valued on permutations also be defined encoded sequences. Results interesting permutation families, namely connected cycle-up-down given.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Statistics on the Hypercubes of Catalan Permutations

For a permutation σ of length 3, we define the oriented graph Qn(σ). The graph Qn(σ) is obtained by imposing edge constraints on the classical oriented hypercube Qn, such that each path going from 0 to 1 in Qn(σ) bijectively encodes a permutation of size n avoiding the pattern σ. The orientation of the edges in Qn(σ) naturally induces an order relation σ among its nodes. First, we characterize ...

متن کامل

Parity Theorems for Statistics on Permutations and Catalan Words

We establish parity theorems for statistics on the symmetric group Sn, the derangements Dn, and the Catalan words Cn, giving both algebraic and bijective proofs. For the former, we evaluate q-generating functions at q = −1; for the latter, we define appropriate signreversing involutions. Most of the statistics involve counting inversions or finding the major index of various words.

متن کامل

From Motzkin to Catalan permutations

For every integer j¿1, we de ne a class of permutations in terms of certain forbidden subsequences. For j = 1, the corresponding permutations are counted by the Motzkin numbers, and for j =∞ (de ned in the text), they are counted by the Catalan numbers. Each value of j¿ 1 gives rise to a counting sequence that lies between the Motzkin and the Catalan numbers. We compute the generating function ...

متن کامل

F-Permutations induce Some Graphs and Matrices

In this paper, by using the notion of fuzzy subsets, the concept of F-permutation is introduced. Then by applying this notion the concepts of presentation of an F-polygroup, graph of an F-permutation and F-permutation matrices are investigated.

متن کامل

Doubly alternating Baxter permutations are Catalan

The Baxter permutations who are alternating and whose inverse is also alternating are shown to be enumerated by the Catalan numbers. A bijection to complete binary trees is also given. R esum e Nous montrons que les permutations de Baxter alternantes dont l'inverse est egalement une permutation de Baxter alternante sont enum er ees par les nombres de Catalan. De plus, nous donnons une bijection...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Mathematics

سال: 2023

ISSN: ['1090-2074', '0196-8858']

DOI: https://doi.org/10.1016/j.aam.2022.102451